Investments In Private Fusion Efforts (from 2015)

Originally Published On January 18th 2015, on The Polywell Blog. Author: Dr. Matthew J Moynihan

           ITER is expensive.  Nobody knows how much.  It could be 16, 21 or 50 billion dollars [9-12].  It is not going to be commercial at that price.  Moreover, ITER will never make energy.  That was fine, when it was the only path to fusion power.  But that is not true anymore.

            NIF has failed.  It cannot get ignition [17].  Even if it could, would it be commercial?  The machine is complex.  It is expensive and inefficient.  Heaps of taxpayer dollars were spent on this.  The public should be furious.   Someone needs to be held accountable. 

            These efforts have stalled.  Their future looks dim.  But, we cannot wait fifty years for fusion power.  Climate change will not allow us. Young fusioneers realize this.  They are not joining ITER or NIF.  They are joining a new breed of companies.  Together, they are building an entirely new fusion industry.  Their collective hope, is to put a dent in the universe.

“We’re here to put a dent in the universe, otherwise why else even be here?” – Steve Jobs

Staff of General Fusion


Traditionally, fusion has focused on any idea in the laser or tokomak family.  Laser fusion means inertial confinement fusion.  This includes: direct drive or indirect drive, fast ignition or magneto-inertial fusion [54].  Basically, any time you are squashing stuff with a laser.  This set of ideas has received over 12 billion in US funding in its’ fifty year lifespan [36].  Currently, it has a poor outlook.  The flagship machine, NIF, was costly and complex.  It was also a colossal failure [55].  The other family of ideas revolves around the tokomak.  The tokomak family covers: spheromaks, the levitating dipole and all the stellerator designs [56, 57].  Basically anytime plasma is raced around in a loop.  Over 177 Tokomaks have been built, designed or operated.  The newest version, ITER is very expensive, complex and behind schedule [64].  Things are not going well.  Even attempts to commercialize the Tokamak are not succeeding.   Tokomak Solutions is a British startup doing just that.  It was founded in 2009 [98].  But, after spending 10 million, the company is little more than a diversion for retired scientists.   The staffs’ average age is over 60 [58 - 63].  They speculate about using the Tokomak as a neutron source.  If this is their business model - they are going to get killed.  Phoenix Nuclear Labs already has a smaller, cheaper and better product based on fusors.  PNL has had this product for over five months [35].  Bottom line: tokomaks and lasers are on their way out.

This is a historic.  For decades, our focus has been on just “getting there”.  Merely getting fusion.  This meant holding a hotter plasma with a higher density for longer.  This is known in the field, as the triple product (density, temperature and confinement time).  People ran roughshod over price, scalability, efficiency or size.  No one cared: they built massive, expensive and complex machines.  But today; we have arrived.  We can do fusion - continuously - for thousands of hours, and for thousands of dollars [35, 22].  We are done with “getting there”.  The next step is commercialization.

The alternative fusion industry:

Since 2000, a dozen fusion companies have been founded [73-105].  Together, they represent a fledgling new industry.  The alternative fusion industry.  What does this industry look like?  I estimate that as of December 2014, it has roughly 450 million in total investment [73-105].  It also engages roughly 330 people [73-105].  These people are spread across fourteen organizations.  A summary of some of the relevant groups is below [73-105].

2 - Summary of Fusion Investments

In total, the industry spans seven different technologies.  Because it is so new - the industry suffers the classic “first-mover” disadvantages.  We have find a way to get funding, train talent and solve incredible technical problems.  The firms have lots in common: determined founders, failures and funding issues.  Our collective goal is fusion energy - but we have differing views on how get there.

How we (might) get fusion power

All these concepts work with plasma.  This is a soup of electrons and ions.  The goal for every ides is to make the ions collide and fuse.  This makes neutrons.  The more neutrons, the more fusion.  Amateurs can make a million a second [22, 23].  Phoenix Nuclear Labs can do 100 billion while JET can do at least 16 quadrillion (the world record) [24, 65].  Next, you must sustain fusion.  This “shot time” is driven by containment.  Focus fusion argues that all they need is a nanosecond for net power, while General Fusion is aiming for hundreds of microseconds and Tri Alpha Energy says it can do 5 milliseconds [30, 31, 66, 67].  But who knows?  Mr. Griengers’ homemade fusor can fuse for hours at room temperature [22, 23].  Could the polywell give the same behavior?  Dr. Park has suggested it; especially if the plasma can be heated steadily [1]. 

Once you contain the hot plasma, you must extract energy.  Not every team has planned this far.  General Fusion wants to absorb everything in a liquid blanket, heat it and make steam [29].  Focus fusion has suggested a traveling wave tube [30].  Polywellers have pushed for a form of direct conversion.  Both of these ideas are shown below.

3 - Fusion Energy Capture Methods

Here is how these ideas work: exhaust from fusion is a mixture of neutrals, ions, electrons and gas.  It is a mess.  It comes off in all directions.  It comes off at many speeds.  First, we must beat this stuff into submission.  Ideally, we only want a beam with one kind of charge.  The traveling wave tube uses a positive beam.  Ions fly down the center.  The pull electrons from the surrounding wire.  This makes a flowing current.  Direct conversion puts metal in the way of the beam [127 - 129].  Ions are absorbed – holding one side of a circuit, steadily positive.  You can draw a current from this.  Several teams have discussed using this [20, 122].  But, though we can do relatively cheap fusion, for hours [22, 23, 35] no team can steadily draw a current from fusion for that long.  Not yet.

The Energy Balance:

What comes after energy collection?  Optimization.  That will revolves around the energy balance.  Any hot plasma concept must grapple with this equation.

4 - Power Capture Equation

John Lawson gave us this equation in 1957 [108].  It is the energy balance for a machine fusing with hot plasma.  We have always merely tried to boost the first term: fusion rate.  But we may finally be changing focus.  The next term is conduction.  This is the loss of mass.  Anytime a plasma touches a surface, it is lost.  The newest designs (polywells, Lockheeds’ machine, the dynomak, Phoenix Nuclear Labs’ device) all appreciate this.  They all have smooth surfaces - and some cases, no surfaces at all.  Both PNL and the polywell have vast space in the center [1, 24].  Space without a solid wall limits conduction loss.  After this comes radiation.  If a particle ever changes speed, it loses some energy as light [109].  This happens everywhere inside the cloud, and for many reasons.  Radiation is a function of cloud composition, temperature, density, size and structure.  Fusioneers are just starting to tune their plasmas to beat this problem.  For example: the polywell works best with tons of cold electrons, and a few hot ions [25].  

5 - Energy Distribution

Can this distribution be done?  We do not know – mixing and instabilities will fight against it [130].  But, it is possible to make plasmas which do not have the common bell curve [25, 110].  Tuning plasma clouds to beat radiation loss is going to be important.  Finally, there is machine efficiency.  Most fusion machines are very inefficient.  NIF is one example.  It takes 200 units of electrical energy to make one unit of laser energy [72].  Most of that does not strike the target.  New methods for energy capture will go a long way here.  Realize: if the energy balance was correct; even the fusor could make net power. 

New Design Principals:

            Wither they know it or not, these groups are embracing a new set of design principals.  Principals that have emerged in the past 10 years - outside tokomaks and laser fusion.  I argue that history will see this as a turning point in fusions’ development.  Below are these principals.

1.      The Blob is Death.  In 1994, Todd Rider assessed the polywell theoretically and came to conclusion it would fail [5, 106].  This post can walk you through his work [107].  Rider did something even more profound, that few appreciate.  He told us what not to do.  He showed that if you merely have a hot plasma blob, you cannot expect net power.  A “blob” is a hot, thermalized, uniform, unstructured cloud of ions.  The blob is death.  Anything you can do to get away from the blob, helps.  This includes squeezing the plasma (ICF, General Fusion, Sandias’ Z-machine) spinning the plasma (Tri Alpha Energy, ITER, JET, Helion), flattening the plasma (focus fusion, theta pinch) or structuring the plasma (polywell, Lockheed).  The further from the blob, the better.

2.      Electric heating. You can accelerate ions down a negative voltage, heating them to fusion temperatures [131].  Today, this is the cheapest and simplest method for heating to fusion.  This is arguably far better than options like radiofrequency heating, neutral beam injection or magnetic oscillation.  Radiofrequency heating works in the same way that a microwave heats food [21, 27, 28].  Beam injection starts by heating the gas; by temporary charging it and racing it down a voltage [132].  The beam is then neutralized and shot into the reactor.  Magnetic oscillation (as I understand it) varies the field around a plasma.  Lockheed is notably following this last path [21, 27, 28].

3.      Cusp confinement. You can hold a plasma with a sharply bent magnetic field [1, 133-135].  This has been long predicted – but never seen until Parks’ work [1].  There are many unknowns, but if it is successful - it may lead to the worlds’ best plasma trap.  In these systems, the plasma “pushes back” the containing field.  This makes to a magnetic free region with an electric current flowing on its’ skin [133-135].  Theoretically, this structure is stable; but who knows?    There are a myriad of instabilities which could destroy it [130].  We may know more when Lockheed publishes what it has learned on this system [21, 27, 28]. 

 4.      Direct conversion.  Direct conversion has been discussed for decades.  The trend of incorporating it directly into designs is what is exciting. This was tested on the TMX fusion device and it achieved a 48% efficiency [128].

Where will all this take us?  No one knows.  These firms are expanding several root technologies simultaneously.  These are: polywells, fusors, dense plasma focus, beam fusion, field reversed configurations and cusp confinement.  These technologies have plenty of overlap.  For example: general fusion has a hybrid between a field reversed configuration and a laser fusion style implosion [33].  Below is a summary of commercial funding by concept [73-105].


Fusion is changing.  We need to stop seeing a hodge-podge of technological novelties and start seeing it as a new industry.  An industry where innovation is happening much faster than in “big science”.  An industry which must consider price - because it does not have an ITER sized blank check.  An industry which is much closer to profit than you realize.  Yet, an industry which still has a long way to go.  In its’ success - may rest the future of the human race. 

6 - Investment into Fusors
7 - Investments into polywells
8 - Private Investments into MFT, DPF, Tokamak
9 - Private Investment into the FRC

Work Cited:

1.      Park, Jaeyoung, Nicholas A. Krall, and Paul E. Sieck. "High Energy Electron Confinement in a Magnetic Cusp Configuration." In Submission (2014): 1-12. Http:// Web. 13 June 2014.

2.      Park, Jaeyoung, Sieck, Paul, Private email communication “Question about B-Field analysis” August 17th 2014.

3.      Park, Jaeyoung. "Measurement of Enhanced Cusp Confinement at High Beta Measurement of Enhanced Cusp Confinement at High Beta." Lecture at UC Irvine. California, Irvine. July 2014. Lecture.

4.      Duncan, Mark, and Robert Bussard. Should Google Go Nuclear? (Summary). N.d. MS. Should Google Go Nuclear? Mark Duncan, 24 Dec. 2008. Web. 4 Feb. 2013.

5.      Rider, Todd H. "A General Critique of Inertial-electrostatic Confinement Fusion Systems." Physics of Plasmas 6.2 (1995): 1853-872. Print.

6.      “Should Google Go Nuclear?" R.W. Bussard. Google Videos. 9 Nov. 2006. 27 September 2014.

7.      “Taking a Stab at Simulation.” The Polywell Blog, 6 Feb. 2013. Web. 27 Sept. 2014.

8.      Plate, Phil. "Hey, What’s 10 Billion Tons of CO2 between Friends?" Slate Magazine. Slate Magazine, 20 Aug. 2014. Web. 27 Oct. 2014.

9.      "ITER - the Way to New Energy." ITER Fast Facts. ITER, 2014. Web. 27 Oct. 2014.

10.  Cho, Adrian. "Cost Skyrockets for United States' Share of ITER Fusion Project." Science Insider. Science/AAAS, 10 Apr. 2014. Web. 27 Oct. 2014.

11.  "Currency Calculator Converter Euro to US Dollar." Currency Calculator (Euro, US Dollar). X-Rates, 27 Oct. 2014. Web. 27 Oct. 2014.

12.  "Fusion Furor." Nature Publishing Group, 23 July 2014. Web. 27 Oct. 2014.

13.  Clery, Dan. "U.S. Energy Agency Jumps into Fusion Funding." Science Insider. AAAS Science, 14 Aug. 2014. Web. 27 Oct. 2014.


15.  Norris, Guy. "Skunk Works Reveals Compact Fusion Reactor Details." Aviation Week. Aviation Week, 15 Oct. 2014. Web. 27 Oct. 2014.

16.  Lockheed Martin "Lockheed Martin: Compact Fusion Research & Development." YouTube. YouTube, 15 Oct. 2014. Web. 27 Oct. 2014.

17.  BRUMFIEL, GEOFF. "Scientists Say Their Giant Laser Has Produced Nuclear Fusion." Http:// National Public Radio, 12 Feb. 2014. Web. 27 Oct. 2014.

18.  Bussard, Robert W. "The Advent of Clean Nuclear Fusion: Superperformance Space Power and Propulsion." 57th International Astronautical Congress (2006). Web.

19.  Laberge, Michel. "Experimental Results for an Acoustic Driver for MTF." Journal of Fusion Energy 28.2 (2009): 179-82. Web. 19 Oct. 2014.

20.  Rostoker, Norman. Controlled Fusion in a Field Reversed Configuration and Direct Energy Conversion. The Regents of The University of California, University Of Florida Research Foundation, assignee. Patent US6611106 B2. 26 Aug. 2003. Print.

21.  McGuire, Thomas. Heating Plasma for Fusion Power Using Magnetic Field Oscillations. Baker Botts LLP, assignee. Issued: 4/2/14, Patent 14/243,447. N.d. Print.

22.  Carl Grienger, Private email.  “Quick Questions.”  October 18th 2014. 

23.  Greninger, Carl. "Fusion in a Basement." YouTube. YouTube, 19 Oct. 2014. Web. 27 Oct. 2014.

24.  Pfeiffer, Greg. "Particle Accelerator | Neutron Generator" Phoenix Nuclear Labs, Sept. 2014. Web. 27 Oct. 2014.

25.  "The Physical Basis for the Polywell – 17. Critical Density: Probably Not A way to Reduce X-ray losses” The Polywell Blog. BlogSpot, 30 July 2012. Web. 27 Oct. 2014.

26.  Sutherland. The Dynomak: An Advanced Spheromak Reactor Concept with Imposed-dynamo Current Drive and Next-generation Nuclear Power Technologies. Fusion Engineering and Design, n.d. Web. 27 Oct. 2014.

27.  McGuire, Thomas. Magnetic Field Plasma Confinement for Compact Fusion Power. US Patent Application, assignee. Patent 14/242,999. 2 Apr. 2014. Print.

28.  McGuire, Thomas. Magnetic Field Plasma Confinement for Compact Fusion Power. World Intellectual Property Organization, assignee. Patent WO 2014/165641 A1. 9 Oct. 2014. Print.

29.  Laberge, Michel. "How Synchronized Hammer Strikes Could Generate Nuclear Fusion." Http:// TED, Mar. 2014. Web. 27 Oct. 2014.

30.  Lerner, Eric. "Focus Fusion Business Plan Version 6." Focus Fusion Business Plan Version 6. Integrity Research Institute, 2003. Web. 27 Oct. 2014. <>

31.  Waldrop, Mitchell. "Plasma Physics: The Fusion Upstarts." Nature Publishing Group, 23 July 2014. Web. 28 Oct. 2014.

32.  Clery, Dan. "Fusion's Restless Pioneers." Fusion's Restless Pioneers. Science/AAAS, 25 July 2014. Web. 28 Oct. 2014.

33.  "Overview of General Fusion." Michael Delage interview. Sept. 2014.

34.  Pfeiffer, Greg. "High Yield Neutron Generator." Phoenix Nuclear Labs. N.P., n.d. Web. 01 Nov. 2014.

35.  PNL Accelerator Achieves Key Reliability Milestone - Phoenix Nuclear Labs." Phoenix Nuclear Labs PNL Accelerator Achieves Key Reliability Milestone Comments. N.P., 8 Aug. 2014. Web. 01 Nov. 2014.

36.  "US Fusion Budget." US Fusion Budget. Fusion Power Associates, n.d. Web. 01 Nov. 2014.

37.  Nick. "Conventional Tokamaks Comparison Table." All the Worlds Tokamaks. 23 Jan. 2011. Web. 4 Apr. 2011. <>.

38.  Clery, Daniel. A Piece of the Sun: The Quest for Fusion Energy. New York: Overlook, 2014. Print.

39.  Cornish, Scott. "The Dependence of Potential Well Formation on the Magnetic Field Strength and Electron Injection Current in a Polywell Device." The Dependence of Potential Well Formation on the Magnetic Field Strength and Electron Injection Current in a Polywell Device. Physics of Plasma, 08 Sept. 2014. Web. 01 Nov. 2014.

40.  "A Biased Probe Analysis of Potential Well Formation in an Electron Only, Low Beta Polywell Magnetic Field." A Biased Probe Analysis of Potential Well Formation in an Electron Only, Low Beta Polywell Magnetic Field. Physics of Plasma, 09 May 2013. Web. 01 Nov. 2014.

41.  Carr, Matthew, and David Gummersall. "Low Beta Confinement in a Polywell Modeled with Conventional Point Cusp Theories." Physics of Plasmas 18.112501 (2011): n. page. Print

42.  Carr, Matthew, and Joe Khachan. "The Dependence of the Virtual Cathode in a Polywell™ on the Coil Current and Background Gas Pressure." Physics of Plasmas 17.5 (2010). American Institute of Physics, 24 May 2010. Web.

43.  Smith, John. "Modeling Some Real Results." The Polywell Blog. The Polywell Blog, 05 July 2011. Web. 01 Nov. 2014.

44.  Smith, John. "The Fierce Urgency of Now." The Polywell Blog. BlogSpot, 26 July 2013. Web. 01 Nov. 2014.

45.  Smith, John. "Taking a Stab at Simulation." The Polywell Blog. The Polywell Blog, 06 Feb. 2013. Web. 01 Nov. 2014.

46.  Corneliuussen, Steven. "Lockheed Martin Claims to be "restarting the Atomic Age" with a Compact Fusion Reactor." Physics Today. American Institute of Physics, 30 Oct. 2013. Web. 31 Oct. 2014.

47.  Palmer, Katie. "So Lockheed Martin Says It's Made a Big Advance in Nuclear Fusion... | WIRED." Conde Nast Digital, 14 Oct. 0014. Web. 30 Oct. 2014.

48.  Dywer, Gwyenne. "Fusion Power: Goodbye Fossil Fuels?" Fusion Power: Goodbye Fossil Fuels? Inside Belleville, 30 Oct. 2014. Web. 01 Nov. 2014.

49.  Tucker, Bill. "Chasing the Holy Grail of Compact Fusion." Forbes. Forbes Magazine, 28 Oct. 2014. Web. 01 Nov. 2014.

50.  "A Big Bet on Small." The Economist. The Economist Newspaper, 16 Oct. 2014. Web. 01 Nov. 2014.

51.  "Lockheed Announces Major Breakthrough in Nuclear Fusion." RT USA. Russia Today, 16 Oct. 2014. Web. 01 Nov. 2014.

52.  S, Eric. "Compact Fusion Research & Development." YouTube. Lockheed Martin, 15 Oct. 2014. Web. 01 Nov. 2014.

53.  Santarious, John. Tentative Agenda: 2014 US-Japan Workshop at UW-Madison. Madison, Wisconsin: U of Wisconsin-Madison, 2014. Print.

54.  Ronald, Davidson. An Assessment of the Prospects for Inertial Fusion Energy. 1st ed. Vol. 1. Washington, D.C.: National Academies, 2013. Print. Ser. 1.

55.  Broad, William J. "So Far Unfruitful, Fusion Project Faces a Frugal Congress." The New York Times. The New York Times, 29 Sept. 2012. Web. 01 Nov. 2014.

56.  "Stellarator." Wikipedia. Wikimedia Foundation, 27 Oct. 2014. Web. 01 Nov. 2014.

57.  Kesner, Jay. "Levitated Dipole Experiment." Levitated Dipole Experiment. Massachusetts Institute of Technology, n.d. Web. 01 Nov. 2014.

58.  Hunt, Julian. "Full CV." Julian Hunt - Full CV. N.p., n.d. Web. 01 Nov. 2014.

59.  "Tokomak Staff Listing." (n.d.): n. page Tokomak Energy. Tokomak Energy. Web. 1 Nov. 2014.

60.  "George D. W. Smith." Wikipedia. Wikimedia Foundation, 26 Oct. 2014. Web. 01 Nov. 2014.

61.  Larbalestier, David. "Graduate Thesis." Applied Superconductivity Center. Applied Superconductivity Center, n.d. Web. 01 Nov. 2014.

62.  Windridge, Melanie. "Home." Research Councils UK. N.p., n.d. Web. 01 Nov. 2014. <>

63.  Buxton, Peter. "Department of Physics." Postdoctoral Researchers. University of York, n.d. Web. 01 Nov. 2014.  <>

64.  Giacomelli, L. "Tomographic Analysis of Neutron and Gamma Pulse Shape Distributions from Liquid Scintillation Detectors at JET." Preprints and Conference Papers Service: EFD-P (13)37. EFDA-JET, 2014. Web. 12 Dec. 2014.

65.  Giacomelli, L., S. Conroy, and F. Belli. "Neutron Emission Profiles and Energy Spectra Measurements at JET." (2013): n. pag. Web. 12 Dec. 2014. <>

66.  An Acoustically Driven Magnetized Target Fusion Reactor

67.  Suponitsky, Victoria, Sandra Barsky, and Aaron Froese. "Richtmyer–Meshkov Instability of a Liquid–gas Interface Driven by a Cylindrical Imploding Pressure Wave." Cornell University. Arxiv, 22 Oct. 2013. Web. 17 May 2014. .

68.  Rose, David S. "How to Pitch to a VC." TED Foundation, Mar. 2007. Web. 12 Dec. 2014. <>

69.  "What is the cost of JET - EUROfusion." EURO Fusion. EURO Fusion, 23 Oct. 2012. Web. 12 Dec. 2014. <>

70.  "What Is the Cost in 1983 Dollars." Measuring Worth. Measuring Worth, 11 Dec. 2014. Web. 11 Dec. 2014. <>

71.  "Euro to Dollars, 1983." Historical Exchange Rates. N.p., 20 Nov. 2014. Web. 12 Dec. 2014.

72.  Moses, Edward I. "The National Ignition Facility: Exploring ICF Burning Plasmas In the Laboratory." Presentation to the American Association for the Advancement of Science. Washington DC. 18 Feb. 2005. Slide 29.  Lecture.

73.   Sengbusch, Evan. "Phoenix Nuclear Labs Makes First Commercial Neutron Generator Sale Closes Financing Round Comments." Phoenix Nuclear Labs. Phoenix Nuclear Labs, 25 Feb. 2014. Web. 10 Dec. 2014.

74.   "Phoenix Nuclear Labs Raises $590,500 from Angel Investors." Http:// Milwaukee Wisconsin, Journal Sentinel, 10 Dec. 2014. Web. 10 Dec. 2014.

75.   Boulton, Guy. "Phoenix Nuclear Labs Wins $3 Million Army Contract." Milwaukee Wisconsin, Journal Sentinel. Milwaukee Wisconsin, Journal Sentinel, 6 Oct. 2011. Web. 10 Dec. 2014.

76.   Sengbusch, Evan. "Phoenix Nuclear Labs Makes Its First Commercial Sale - Phoenix Nuclear Labs." Phoenix Nuclear Labs. Phoenix Nuclear Labs, 25 Feb. 2014. Web. 10 Dec. 2014.

77.   Klein, Alex. "Beam Fusion." Technology (FPGeneration). Beam Fusion, n.d. Web. 04 Apr. 2013.

78.   "How Many People Worked at FPGeneration." Message to Alex Klien. 5 Dec. 2014. E-mail.

79.   Newman, Judy. "Phoenix Nuclear Labs Gets 2 Army Contracts: wall street journal" Wisconsin State Journal, 23 Oct. 2012. Web. 10 Dec. 2014.

80.   Gallaher, Kathleen. "Madison Groups Win Funding for Isotope Work." Milwaukee Wisconsin, Journal Sentinel. Milwaukee Wisconsin, Journal Sentinel, 4 Oct. 2010. Web. 10 Dec. 2014.

81.   LaMonica, Martin. "How to Fund an Atomic Startup | Xconomy." Xconomy RSS. Xconomy RSS, 14 Aug. 2014. Web. 10 Dec. 2014.

82.   Chang, Kenneth. "Practical Fusion, or Just a Bubble?" The New York Times. The New York Times, 26 Feb. 2007. Web. 10 Dec. 2014.

83.   Lerner, Eric. "FOCUS FUSION: EmPOWERtheWORLD." Indiegogo. Indiegogo, 5 July 2014. Web. 10 Dec. 2014.

84.   Jafarov, Isayev. "Iran to Build Nuclear Fusion Producing Plant." Trend. Trend Iran, 13 Nov. 2012. Web. 10 Dec. 2014.

85.   Laberge, Michel. "General Fusion Closes First Series A Funding with Support from Sustainable Development Technology Canada." General Fusion Completes US$9M Series a Funding (2009): n. page. Http:// General Fusion, 4 Aug. 2009. Web. 10 Dec. 2014.

86.   Laberge, Michel. "General Fusion." Crunch Base. Crunch Base, n.d. Web. 10 Dec. 2014.

87.   Bartel, Mario. "Where Are They Now? General Fusion Gets Closer to the Sun - Burnaby News Leader." Burnaby News Leader. Burnaby News Leader, 2 Jan. 2014. Web. 10 Dec. 2014.

88.   "Tri Alpha Energy." Crunch Base. Tri Alpha Energy, n.d. Web. 10 Dec. 2014.

89.   Simmons, Gerald, and Dale Prouty. "Tri Alpha Energy - Notice of Sale of Securities - $646,710." US Security and Exchange Commission, 23 Feb. 2001. Web. 10 Dec. 2014.

90.   "How Much Total Investment Has LXXP Received?" Focus Fusion Society Forum. N.P., 22 Nov. 2014. Web. 10 Dec. 2014.

91.   Frisbee, Robert. "THE NASA-JPL ADVANCED PROPULS1ON PROGRAM." (1997) page. Web. 10 Dec. 2014.

92.   Du Bois, Dennis. "Congratulations to Cleantech Open 2013 Regional Finalists - Energy Priorities." Energy Priorities. Energy Priorities, 22 Oct. 2013. Web. 11 Dec. 2014. <>.

93.   Slough, John. "FISO: MSNW LLC and "the First Realistic Approach to Fusion-based Propulsion"" Space for All. Http://, 26 Sept. 2013. Web. 11 Dec. 2014. <>.

94.   Slough, John. "MSNW, LLC." NASA SBIR & STTR Program Homepage. NASA SBIR Program, n.d. Web. 11 Dec. 2014. <>.

95.   Slough, John. "NIAC 2012 Phase I & Phase II Awards Announcement." NASA NIAC. NASA, 2012. Web. 10 Dec. 2014. <>.

96.   Westenhaus, Brian. "Funding Continues for Bussards’ Fusion Reactor." Funding Continues for Bussards’ Fusion Reactor. New Energy and Fuel, 23 Aug. 2007. Web. 11 Dec. 2014. <>.

97.   Henry, Margaret. "Tokamak Solutions Secures Funding to Develop Powerful Neutron Source." UK Business Angels Association. UK Business Angels, 14 Feb. 2011. Web. 11 Dec. 2014. <>.

98.   Sykes, Alan. "Tokamak Solutions." Crunch Base. Tokamak Solutions, n.d. Web. 11 Dec. 2014. <>.

99.   "Tokamak Solutions UK Ltd." Http:// PSEPS, n.d. Web. 10 Dec. 2014. <>.

100.            Research Councils UK. "Development of a Small Tokamak with High Temperature Superconducting Magnets for Sale as a Fusion Research Instrument." Tokamak Solutions UK Ltd, Apr. 2012. Web. 11 Dec. 2014. <>.

101.            Sykes, Alan. "Tokamak Energy – About Us." Tokamak Solutions. Tokamak Solutions, 2014. Web. 11 Dec. 2014. <>.

102.            "Technology Strategy Board." Technology Strategy Board. Grants over 25K, April 2014, Apr. 2014. Web. 10 Dec. 2014. <>.

103.  Lerner, Eric. "Funding." Focus Fusion. Lawrenceville Plasma Physics, 2014. Web. 11 Dec. 2014. <>.

104. Rambonnet, Martijn. "Introduction." Fusor Forum., 17 Mar. 2011. Web. 11 Dec. 2014. <>.

105. Syed, Asher, and Micheal Ten. "Quora." What Are the Best Companies Right Now in Fusion Energy? Quora, 10 July 2014. Web. 11 Dec. 2014. <>.

106. “Fundamental limitations on Plasma Fusion Systems not in thermodynamic equilibrium” Todd Rider, Thesis, MIT, June 1995.

107. "The Polywell Blog." : Explaining the Counter Argument (Part II). N.P., 10 Jan. 2011. Web. 11 Dec. 2014. <>.

108. Lawson, J. D. "Some Criteria for a Power Producing Thermonuclear Reactor." Proceedings of the Physical Society. Section B 70.1 (1957): 6-10. Print.

109. J. Larmor, "On a dynamical theory of the electric and luminiferous medium", Philosophical Transactions of the Royal Society 190, (1897) pp. 205–300 (Third and last in a series of papers with the same name).

110. Moreau, M. "Non-thermal Plasma Technologies: New Tools for Bio-decontamination." Science Direct. Biotechnology Advances, 16 Aug. 2008. Web. 11 Dec. 2014. <

111. Tuszewski, M. "Field Reversed Configurations." Nuclear Fusion 28.11 (1988): 2033-092.

112.  “Evidence of a hot dense plasma in a theta pinch” Green, 1960

113. “Field mixing and associated neutron production in a plasma” Kolb, 1959

114. “A new high performance field reversed configuration operating regime in the C-2 device”  Physics of Plasma, 19, 056108 (2012), M. Tuszewski

115.  Pietrzyk, Z. a., G. c. Vlases, R. d. Brooks, K. d. Hahn, and R. Raman. "Initial Results from the Coaxial Slow Source FRC Device." Nuclear Fusion 27.9 (1987): 1478-488. Web.

116.  Goldenbaum, G., J. Irby, Y. Chong, and G. Hart. "Formation of a Spheromak Plasma Configuration." Physical Review Letters 44.6 (1980): 393-96. Web.

117. Nogi, Yasuyuki, Hiroaki Ogura, Yukio Osanai, Katsunori Saito, Shouichi Shiina, and Hisamitsu Yoshimura. "Spheromak Formation by Theta Pinch." Journal of the Physics Society Japan 49.2 (1980): 710-16. Web.

118. Jones, W. B. "Generation and Motion of Plasmoids in a Magnetic Field with Mirrors." Physics of Fluids 11.7 (1968): 1550. Web

119. Slough, John. "MOQUI Simulation of Two FRCs Colliding." YouTube. MSNW LLC, 27 Mar. 2013. Web. 11 Jan. 2015.

120. Gerhardt, S. P., E. Belova, M. Inomoto, M. Yamada, H. Ji, Y. Ren, and A. Kuritsyn. "Equilibrium and Stability Studies of Oblate Field-reversed Configurations in the Magnetic Reconnection Experiment." Physics of Plasmas 13.11 (2006): 112508. Web.

121. Jardin, S. C., and M. Yamada. "Status and Promising Directions for Field Reversed Configuration Research." Conference Summary. Princeton Plasma Physics Laboratory, 8-9 June 1999. Web. 12 Jan. 2015.

122. Slough, John, and David Kirtley. "Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket." NIAC Spring Symposium (2012): Pasadena, CA. Web. 27 Mar. 2012.

123. Steinhauer, Loren C. "Review of Field-reversed Configurations." Physics of Plasmas 18.7 (2011): 070501. Web.

124. Santarius, John, private conversation, September 2014.

125. "Tri Alpha Energy, Inc." Wikipedia. Wikimedia Foundation, n.d. Web. 18 Jan. 2015.

126. "The Fusion Driven Rocket - Fall 2012 NAIC." YouTube. YouTube, 17 Nov. 2012. Web. 18 Jan. 2015.

127. Moir, R., and William Barr. "Venetian-Blind Direct Energy Converter for Fusion Reactors." Nuclear Fusion 13 (1973): 35-46. Print.

128. Barr, William, and R. Moir. "Experimental Results from a Beam Direct Converter at 100 KeV." Journal of Fusion Energy 2.2 (1982): 131-43. Print.

129. Rosenbluth, Marshall. "Generic Issues for Direct Conversion of Fusion Energy from Alternative Fuels." Plasma Physics and Controlled Fusion 36 (1994): 1255-268. Print.

130. "List of Plasma Instabilities." Wikipedia. Wikimedia Foundation, 17 Nov. 2014. Web. 18 Jan. 2015.

131. Robert L. Hirsch, "Inertial-Electrostatic Confinement of Ionized Fusion Gases", Journal of Applied Physics, v. 38, no. 7, October 1967

132.  "ITER - the Way to New Energy." ITER. <> Peter Ginter. N.p., n.d. Web. 15 Jan. 2015.

133. Berkowitz, J., K. o. Friedrichs, H. Goertzel, H. Grad, J. Killeen, and E. Rubin. "Cusped Geometries." Journal of Nuclear Energy (1954) 7.3-4 (1958): 292-93. Web. 16 June 2014.

134. Haines, M. g. "Plasma Containment in Cusp-shaped Magnetic Fields." Nuclear Fusion 17.4 (1977): 811-58. Web. 18 June 2014.

135.   Berkowitz, J., H. Grad, and H. Rubin. "Magnetohydrodynamic Stability." Proceedings of Second UN International Conference on Peaceful Uses of Atomic Energy (1958): P/376. Web. 18 June 2014.